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seeded emulsion polymerization, [ 8 ]  controlled phase 
separation, [ 9 ]  and Pickering emulsion polymerization. [ 10 ]  
Among these, seeded emulsion polymerization is effi cient 
and potentially scalable for the preparation of anisotropic 
particles. A variety of nonspherical particles have been 
acquired using this method, such as snowman-like (or 
Janus), [ 11 ]  dumbbell-like, [ 12 ]  raspberry-like, [ 13 ]  and acorn-
shaped particles. [ 14 ]  

 One application for nonspherical particles, especially 
for Janus particles, is the solid surfactants for Pickering 
emulsion. [ 5 ]  As we know, stabilizing the emulsion system 
is important for emulsion polymerization. Traditional 
emulsion polymerization, which is stabilized by molec-
ular surfactants, is inclined to suffer destabilization via 
latex coalescence and Ostwald ripening. [ 15 ]  In the past 
decade, Pickering emulsions stabilized by solid parti-
cles instead of molecular surfactants have shown supe-
rior emulsion stability. A wide range of inorganic and 
organic particles, such as clay, silica particles, and block 
copolymer micelles, no matter isotropic or Janus, are 

 A simple route is reported to synthesize colloidal particle clusters (CPCs) from self-assembly of 
in situ poly(vinylidene fl uoride)/poly(styrene- co - tert -butyl acrylate) [PVDF/P(St- co - t BA)] Janus 
particles through one-pot seeded emulsion single electron transfer radical polymerization. In 
the in situ Pickering-like emulsion polymerization, the  t BA/St/PVDF feed ratio and polymeri-
zation temperature are important for the formation of well-defi ned CPCs. When the  t BA/St/
PVDF feed ratio is 0.75 g/2.5 g/0.5 g and the reaction temperature is 35 °C, relatively uniform 
raspberry-like CPCs are obtained. The hydrophobicity of the 
P(St- co - t BA) domains and the affi nity of PVDF to the aqueous 
environment are considered to be the driving force for the 
self-assembly of the in situ formed PVDF/P(St- co - t BA) Janus 
particles. The resultant raspberry-like CPCs with PVDF parti-
cles protruding outward may be promising for superhydro-
phobic smart coatings.  
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  1.     Introduction 

 Anisotropic particles with various shapes or different 
chemical compositions have aroused great interest 
because of their promising applications in compatibi-
lizers, [ 1 ]  building blocks for self-assembly, [ 2,3 ]  smart coat-
ings, [ 4 ]  and colloid surfactants. [ 5 ]  Many methods have 
been developed to prepare anisotropic particles, including 
selective surface modifi cation, [ 6 ]  surface nucleation, [ 7 ]  

Macromol. Rapid Commun. 2016, 37, 1282−1287



Macromolecular
Rapid CommunicationsSelf-Assembled Colloidal Particle Clusters from In Situ Pickering-Like Emulsion Polymerization. . .

www.mrc-journal.de

 

www.MaterialsViews.com 1283© 2016  WILEY-VCH Verlag GmbH &  Co.  KGaA, Weinheim

capable of stabilizing Pickering emulsions. [ 16,17 ]  However, 
because of their intrinsic anisotropy, Janus particles offer 
more advantages in the stabilization of emulsions than 
isotropic particles, as proved by many theoretical, simu-
lation, and experimental studies. Krausch and co-workers 
reported that Janus particles showed a signifi cant reduc-
tion of the oil/water interfacial tension compared to 
similar isotropic particles. [ 18 ]  Aveyard found that ther-
modynamically stable emulsions can be generated using 
Janus particles as the solid surfactant based on free 
energy calculations. [ 19 ]  The pioneer work by Müller and 
co-workers demonstrated that Janus particles (≈20 nm in 
size) from block copolymers can be used as surfactants for 
Pickering emulsion polymerization. [ 20 ]  

 As a simple building block, Janus particles have shown 
profound promise in constructing complex hierarchical 
structures. Nie and co-workers successfully prepared 
hollow and tube-like clusters via self-assembly of amphi-
philic Janus particles in selective solvents. [ 21 ]  Kraft 
et al. found that patchy particles with surface roughness 
spontaneously organized into clusters at high depletant 
concentrations. [ 22 ]  Peng et al. acquired colloidal particle 
clusters (CPCs) using dumbbell-shaped particles, and 
a simple computer simulation correctly predicted the 
structures formed. [ 23 ]  

 Recently, we reported facile and relatively large-scale 
syntheses of poly(vinylidene fl uoride) (PVDF)/polysty-
rene (PS) Janus and nonspherical particles using seeded 
emulsion single electron transfer radical polymerization 
(SET-RP). [ 24 ]  Compared to other living radical polymeriza-
tion methods, such as atom transfer radical polymeriza-
tion, the SET-RP method presents advantages, e.g., mild 
reaction condition, colorless polymer product, and easy 
removal of copper catalyst after reaction. [ 25–27 ]  In this 
work, a comonomer,  tert -butyl acrylate ( t BA), is added in 
the seeded emulsion SET-RP of styrene (St) in the presence 

of 180 nm PVDF latex particles. Intriguingly, under appro-
priate conditions, PVDF/P(St- co - t BA) Janus particles, 
which are formed in situ in the early stage polymeriza-
tion, can self-assemble into the Pickering-like emulsion. 
Further polymerization eventually leads to raspberry-like 
CPCs with P(St- co - t BA) as the core and PVDF particles pro-
truding outward. It is the fi rst report that one-pot seeded 
emulsion polymerization enables the formation of Janus 
particles and their self-assembly into Pickering-like emul-
sion to form hierarchical CPCs.  

  2.     Results and Discussion 

 To illustrate the formation process of PVDF/P(St- co - t BA) 
complex colloidal particles, morphology evolution of the 
colloidal particles during polymerization was fi rst studied 
by fi eld-emission scanning electron microscopy (FE-SEM) 
for sample aliquots at different time intervals. Here, we 
fi xed the  t BA/St/PVDF feed ratios as 0.75 g/2.5 g/0.5 g, and 
the total polymerization time was 5 h. The reaction tem-
perature was 35 °C. 

 At the beginning of polymerization, regular spherical 
PVDF seed particles (average diameter ≈180 nm) were 
seen (Figure  1 A). At 1 h (Figure  1 B), complex colloidal 
particles were seen. First, individual PVDF particles with 
one or two tiny P(St- co - t BA) protrusions were observed, 
implying the initial formation of Janus particles. This 
could be attributed to the surface nucleation of the 
comonomer-swollen P(St- co - t BA) domains on PVDF. [ 7 ]  
Second, several particle clusters with two and three PVDF 
seeds surrounding one P(St- co - t BA) domain were noticed; 
see the arrow in Figure  1 B. Third, larger CPCs with many 
PVDF bulges were present. From these observations, it 
was inferred that the in situ PVDF/P(St- co - t BA) (monomer 
swollen) Janus particles, which behaved like particle 
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 Figure 1.    FE-SEM micrographs of PVDF/P(St- co - t BA) complex colloidal particles obtained at the polymerization time of A) 0, B) 1, C) 2, D) 3, 
E) 4, and F) 5 h when the  t BA/St/PVDF feed ratio is 0.75 g/2.5 g/0.5 g. The polymerization temperature is 35 °C. The insets show SEM image 
at a higher magnifi cation (scale bars are 200 nm).
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surfactants, self-assembled together in the aqueous 
media and formed raspberry-like CPCs for subsequent 
Pickering-like emulsion polymerization.  

 When the reaction time reached 2 h (Figure  1 C), the 
average size of the CPCs became larger (≈426 nm for the 
average size along the particle long axes) as a result of 
continued polymerization within the inner monomer-
swollen P(St- co - t BA) cores. Judging from the size and sur-
face roughness (i.e., from lamellar PVDF crystals), the pro-
truding bulbs should be PVDF seeds (see Figure S1 in the 
Supporting Information). After polymerization for 3–5 h 
(Figure  1 D–F), the fi nal average size of the PVDF/P(St- co -
 t BA) CPCs reached about 670 nm. 

 To confi rm the microstructures in Figure  1 , the 
morphology development of PVDF/P(St- co - t BA) com-
plex colloidal particles was also studied by transmission 
electron microscopy (TEM), as shown in Figure  2 . At 1 h 
(Figure  2 B), newly formed PVDF/P(St- co - t BA) Janus parti-
cles were seen with the PVDF particles showing a darker 
contrast due to their higher density. At 2 h (Figure  2 C), 
these Janus particles self-assembled into CPCs for the 
subsequent Pickering-like emulsion polymerization. As 
the polymerization continued, the raspberry-like CPCs 
became larger due to the gradual growth of the P(St- co -
 t BA) cores (Figure  2 D–F).  

 The particle size and size distribution of the complex 
colloidal particles at 3 h were determined by dynamic 
light scattering, and the result is shown in the inset of 
Figure  2 D. The number-average particle size was ≈577 
nm and the polydispersity index (PDI) was 0.317. It is 
interesting to note that the histogram showed a narrow 
unimodal peak, but the PDI estimated seemed to be rela-

tively high. This could possibly be attributed to the irreg-
ular shape of the CPCs. 

 In our previous study, [ 24 ]  PVDF/PS composite latex 
particles with controllable morphologies were prepared 
using the same SET-RP method and similar reaction con-
ditions. Snowman-like, raspberry-like, and popcorn-like 
particles were obtained as a result of St polymerization 
on the surface of PVDF seeds. However, CPCs from the 
self-assembly of the PVDF/PS Janus particles were never 
observed. We speculate that the  t BA comonomer in the 
seeded emulsion polymerization provides opportunity for 
the self-assembly of the Janus particles into raspberry-
like CPCs with PVDF seeds protruding outward. In the fol-
lowing work, we further studied the infl uence of  t BA/St 
feed ratio on the self-assembled morphology. 

 In this experiment, we fi xed the St/PVDF ratio 
(2.5 g/0.5 g), reaction time (5 h), and polymerization 
temperature (35 °C), but varied the  t BA/St feed ratio at 
0.25 g/2.5 g, 0.75 g/2.5 g, and 1.75 g/2.5 g, respectively. 
The corresponding FE-SEM and TEM images of the as-
synthesized complex colloidal particles are shown in 
Figure  3 . When the  t BA/St feed ratio was 0.25 g/2.5 g, 
the resulting morphology showed a small size (average 
diameter ≈300 nm), and many complex colloidal par-
ticles had four PVDF seeds protruding outward with a 
tetrahedron shape (Figure  3 A,D). It is likely that there 
is not enough  t BA to induce the self-assembly with 
large aggregation numbers. When the  t BA/St feed ratio 
increased to 0.75 g/2.5 g, relatively uniform complex 
colloidal particles with many PVDF seeds protruding 
outward were seen in Figure  3 B,E. Further increasing the 
 t BA/St feed ratio to 1.75 g/2.5 g (Figure  3 C,F), two types 
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 Figure 2.    TEM micrographs of PVDF/P(St- co - t BA) complex colloidal particles obtained at the polymerization time of A) 0, B) 1, C) 2, D) 3, 
E) 4, and F) 5 h when the  t BA/St/PVDF feed ratio is 0.75 g/2.5 g/0.5 g. The polymerization temperature is 35 °C. The inset in (D) shows particle 
size and size distribution of PVDF/P(St- co - t BA) complex colloidal particles obtained at 3 h. The inset in (F) is a TEM image at a higher magni-
fi cation (scale bar is 400 nm).
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of particles coexisted. One was the CPCs with smaller 
size (see the arrow in the inset of Figure  3 C) and the 
other was larger spheres with a few PVDF protrusions. 
It is likely that excess  t BA caused signifi cant swelling 
and growth of the P(St- co - t BA) domains. Therefore, the 
optimum  t BA/St feed ratio is determined to be around 
0.75 g/2.5 g. Furthermore, the carbon, oxygen, and fl uo-
rine contents on the surface of the PVDF/P(St- co - t BA) 
complex colloidal particles at different  t BA/St feed ratios 
were studied by X-ray photoelectron spectroscopy. The 
analysis results indicated that the higher the  t BA/St feed 
ratio, the higher oxygen content on the sample surface 
(see Figure S2 in the Supporting Information). This is 
consistent with the above observations in Figure  3 .  

 Although we found the optimum  t BA/St feed ratio, it 
was still not clear why  t BA was infl uential for the for-
mation of the CPCs. Consequently, the seeded emulsion 
polymerization was carried out at different temperatures 
(25, 35, and 45 °C) by fi xing the reaction time (5 h) and 
the  t BA/St/PVDF feed ratios (0.75 g/2.5 g/0.5 g). When 
the temperature was 25 °C, grape-like colloidal aggre-
gates with many PVDF seeds protruding outward were 
seen in the FE-SEM and TEM micrographs (Figure  4 A,D). 
Raising the polymerization temperature to 35 °C, rela-
tively uniform raspberry-like complex colloidal particles 
were obtained (Figure  4 B,E). Further increasing the tem-
perature to 45 °C, only snowman-like Janus particles were 
observed, and no complex colloidal particles or colloidal 
aggregates could be seen (Figure  4 C,F).  

 On the basis of the above experimental results, we 
propose the formation mechanism of raspberry-like 
PVDF/monomer-swollen P(St- co - t BA) CPCs, as shown in 
Figure  5 . During the initial comonomer swelling stage, 
the PVDF seed is stabilized by the anchored surfactants 
on its surface. The comonomers cannot swell the PVDF 
seed because St and  t BA are highly immiscible with 
PVDF. When the Cu(0) wires are added into the system, 
the initiator [methyl 2-bromopropionate] in the swollen 
comonomer layer can receive the outer shell electron 
provided by the catalyst Cu(0) to produce primary free 
radicals, which then initiate the copolymerization of 
St and  t BA. As a result of dewetting, the polymerized 
P(St- co - t BA) nucleates into a bulge on the surface of the 
PVDF seed. As the polymerization continues, snowman-
like Janus PVDF/P(St- co - t BA) (monomer-swollen) par-
ticles form. [ 7,24,28 ]  The surface energies for water, PS, 
and P t BA are 70, 40.7, and 31.2 mN m –1 , respectively, [ 29 ]  
indicating that P t BA is more hydrophobic than PS. Intro-
duction of  t BA units into PS makes the copolymer more 
hydrophobic. On the other hand, PVDF is a polar polymer 
and thus has a better affi nity to the aqueous environ-
ment than the monomer-swollen P(St- co - t BA). As a result, 
the Janus PVDF/monomer-swollen P(St- co - t BA) parti-
cles (swollen with comonomers) tend to self-assemble 
into CPCs in the aqueous media with monomer-swollen 
P(St- co - t BA) as the core and PVDF seeds protruding out-
ward, forming Pickering-like emulsion. Upon continued 
swelling with comonomers, the monomer-swollen P(St-
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 Figure 3.    A,B,C) FE-SEM and D,E,F) TEM micrographs of the PVDF/P(St- co - t BA) complex colloidal particles synthesized at different  t BA/St 
feed ratios: (A,D) 0.25 g/2.5 g, (B,E) 0.75 g/2.5 g, and (C,F) 1.75 g/2.5 g, when the St/PVDF feed ratio is fi xed at 2.5 g/0.5 g. The polymeriza-
tion temperature is 35 °C and the polymerization time is 5 h. The insets in (C,E) are the corresponding images at a higher magnifi cation 
(scale bar is 400 nm).
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 co - t BA) cores gradually grow larger, and fi nally form 
raspberry-like CPCs.  

 Using this proposed mechanism, we can explain our 
experimental observations above. If there is no  t BA in 
the monomer feed, the PS domains in the Janus par-
ticles are not hydrophobic enough to induce the self-
assembly in the aqueous media. This is observed in our 
recent report. [ 24 ]  At a low  t BA/St feed ratio (0.25 g/2.5 g), 
the aggregation strength of the monomer-swollen P(St-
 co - t BA) is so weak that only small clusters can form (see 
the tetrahedral particles in Figure  3 A). When the  t BA/St 
feed ratio is too high (1.75 g/2.5 g), the aggregation and 
monomer-swelling become so much that large spherical 

particles with only a few PVDF seeds are observed (see 
Figure  3 C). On the other hand, the self-assembly/clus-
tering of the PVDF/monomer-swollen P(St- co - t BA) Janus 
particles must be assisted by the swelling of comono-
mers. At low temperatures (e.g., 25 °C), the polymeri-
zation rate should be low, and the monomer-swollen 
P(St- co - t BA) domains have enough time to assemble or 
aggregate together, forming grape-like aggregates. At 
high temperatures (e.g., 45 °C), the polymerization rate 
is so high that there may not be enough comonomer 
swelling in the P(St- co - t BA) bulge throughout the polym-
erization process. Consequently, the P(St- co - t BA) domains 
can never weld together, eventually leading to isolated 
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 Figure 4.    A,B,C) FE-SEM and D,E,F) TEM micrographs of the PVDF/P(St- co - t BA) complex colloidal particles obtained at different 
polymerization temperatures: (A,D) 25 °C, (B,E) 35 °C, and (C,F) 45 °C, when the  t BA/St/PVDF feed ratios are 0.75 g/2.5 g/0.5 g. The poly-
merization time is 5 h.

 Figure 5.    Schematic morphology evolution of as-prepared PVDF/P(St- co - t BA) complex colloidal particles triggered by SET-RP via surfactant-
free seeded emulsion copolymerization. PVDF seeds are yellow, comonomers of  t BA and St and monomer-swollen P(St- co - t BA) domains 
are gray.
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Janus particles after polymerization. Therefore, there is 
a delicate balance between the polymerization rate and 
the swelling of comonomers in the P(St- co - t BA) domains 
for the self-assembly of Janus particles throughout the 
Pickering-like emulsion polymerization.  

  3.     Conclusions 

 In conclusion, adding the  t BA comonomer in the one-pot 
seeded emulsion SET-RP of St in the presence of 180 nm 
PVDF seeds enabled self-assembly or clustering of the 
in situ formed PVDF/P(St- co - t BA) Janus particles in the 
aqueous media. After Pickering-like emulsion polymeriza-
tion, relatively uniform raspberry-like CPCs (≈600 nm) were 
obtained with PVDF seeds protruding outward. The  t BA/St/
PVDF feed ratios and polymerization temperature played 
an important role in achieving relatively well-defi ned 
CPCs. On the basis of the experimental results, a possible 
mechanism was proposed, where the hydrophobicity of the 
monomer-swollen P(St- co - t BA) domains, the swelling by 
the  t BA/St comonomers, and the polymerization rate need 
to reach a delicate balance to ensure the self-assembly/
clustering and the subsequent Pickering-like emulsion 
polymerization. These raspberry-like CPCs may fi nd poten-
tial applications in superhydrophobic smart coatings.  
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